物理所等开发电化学活性多功能隔膜涂层提升锂

作者:七位数 | 2020-01-22 11:04

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。/ 更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  与现有锂离子电池体系相比,锂硫电池具有更高的理论能量密度、更低的成本和环境友好等优势,是下一代高比能电池体系的理想候选之一。硫(S8)是典型的阴离子变价的转换反应正极材料,优点是理论容量高,但缺点在于电化学反应的中间态产物多硫化锂极易溶于醚类电解液,穿梭到金属锂负极发生不可逆反应,被称为“穿梭效应”,是限制锂硫电池循环寿命的最重要原因。同时,在放电过程中,液态的多硫化锂会形成Li2S绝缘层覆盖在正极表面,阻碍电子和离子的传导,使电池的倍率性能下降。因此,解决这些问题的关键在于有效控制多硫化锂的迁移。

  中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室E01组副研究员索鎏敏与美国麻省理工学院教授李巨和博士薛伟江合作,在前期“嵌入-转化”混合电极大幅提升锂硫电池单体能量密度研究基础上(Nature Energy,4, 374–382,2019),首次开发了一种同时具有高电子-离子电导和电化学活性的Chevrel相Mo6S8隔膜多功能涂层,成功解决了上述问题,并将其应用到锂硫软包电池的研究中。

  该新型涂层成功抑制了Li2S绝缘层的形成,实现了传统硫正极的超快速充放(25分钟充满/放空)。该涂层对多硫化锂具有很强的吸附力,成功地阻止了多硫化锂向锂负极一侧的“穿梭”,实现了工业级高负载硫正极的长寿命循环。更重要的是,不同于传统非活性涂层会降低全电池能量密度,该新型涂层可以匹配压实后的硫正极,使能量密度提高20%以上。同时,研究者们与美国布鲁克海文国家实验室合作,利用目前世界上最先进的同步辐射全场X射线扫描成像技术(Full Field X-ray Tomography,FFXT),首次在实际电池运行过程中研究了该涂层材料的演化机理。此外,软包电池的性能测试进一步表明,该多功能涂层的使用可以将循环寿命提高一倍以上,对推动锂硫电池商业化具有非常重要的意义。该研究结果近日发表在Cell旗下全新材料类期刊Matter上,文章题目为Manipulating sulfur mobility enables advanced Li-S batteries。

  相关工作得到科技部重点研发计划(2018YFB0104400)、国家自然科学基金委(51872322)等的支持。

  与现有锂离子电池体系相比,锂硫电池具有更高的理论能量密度、更低的成本和环境友好等优势,是下一代高比能电池体系的理想候选之一。硫(S8)是典型的阴离子变价的转换反应正极材料,优点是理论容量高,但缺点在于电化学反应的中间态产物多硫化锂极易溶于醚类电解液,穿梭到金属锂负极发生不可逆反应,被称为“穿梭效应”,是限制锂硫电池循环寿命的最重要原因。同时,在放电过程中,液态的多硫化锂会形成Li2S绝缘层覆盖在正极表面,阻碍电子和离子的传导,使电池的倍率性能下降。因此,解决这些问题的关键在于有效控制多硫化锂的迁移。

  中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室E01组副研究员索鎏敏与美国麻省理工学院教授李巨和博士薛伟江合作,在前期“嵌入-转化”混合电极大幅提升锂硫电池单体能量密度研究基础上(Nature Energy,4, 374–382,2019),首次开发了一种同时具有高电子-离子电导和电化学活性的Chevrel相Mo6S8隔膜多功能涂层,成功解决了上述问题,并将其应用到锂硫软包电池的研究中。

  该新型涂层成功抑制了Li2S绝缘层的形成,实现了传统硫正极的超快速充放(25分钟充满/放空)。该涂层对多硫化锂具有很强的吸附力,成功地阻止了多硫化锂向锂负极一侧的“穿梭”,实现了工业级高负载硫正极的长寿命循环。更重要的是,不同于传统非活性涂层会降低全电池能量密度,该新型涂层可以匹配压实后的硫正极,使能量密度提高20%以上。同时,研究者们与美国布鲁克海文国家实验室合作,利用目前世界上最先进的同步辐射全场X射线扫描成像技术(Full Field X-ray Tomography,FFXT),首次在实际电池运行过程中研究了该涂层材料的演化机理。此外,软包电池的性能测试进一步表明,该多功能涂层的使用可以将循环寿命提高一倍以上,对推动锂硫电池商业化具有非常重要的意义。该研究结果近日发表在Cell旗下全新材料类期刊Matter上,文章题目为Manipulating sulfur mobility enables advanced Li-S batteries。

  相关工作得到科技部重点研发计划(2018YFB0104400)、国家自然科学基金委(51872322)等的支持。

  图2. 6S8多功能隔膜的原位电化学三维射线成像(In-situ 3D tomography)


七位数